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Ici comme dans I'examen final, les QCM représentent entre 30 et 35% de la note finale.
Les réponses correctes comptent pour 2, 5 points s’il y a quatre réponses possibles, 1 point
pour les questions de type « vrai-faux », et dans les deux cas, les réponses incorrectes ou
absentes pour 0 point. Il n’y a donc pas de points négatifs dans ’examen, le but
étant de tester vos connaissances, et non ce que vous ne savez pas. Il y a dix
questions pour lesquelles on donne quatre réponses possibles, cinq questions vrai-faux
(qui représentent donc 2,5 x 10 +5 x 1 = 30 points) ainsi que cing exercices a rédaction
détaillée représentant 70 points. Le total des points est donc égal a 100.

Questionnaire a choix multiples

Question 1 (2,5 points). Soit A € Mg(C) telle que J(A) = Jy(43) ® J1(4i) @ Jo(V5) @

J1(V/5). Alors, le rapport ky = X4 ontre le polynéme caractéristique et le polynome
A
minimal est égal a

O (X — 40)*(X — V/5)2
O (X —4i)%(X — V5)%
O 1.

(X — 4i)(X —V/5).

En effet, la forme de Jordan montre que le polynéme caractéristique est égal a (X —
4i)5(X — /5)? et que le polynéme minimal est égal & (X — 44)4(X — v/5)%

Question 2 (2,5 points). Soit A € Mg(C) dont le polynéme caractéristique et le polynéme
minimal sont donnés respectivement par xa4(X) = (=X — 1)(X + 7i)>(X — v/2)° et
pa = (X +1)(X +7)*X —+/2)* Alors, la matrice de Jordan J(A) de A est donnée par

O Ji(=1) @ J5(=7i) @ J5(V/2).

O Ji(=1) @ Jo(=Ti) @ J1(=Ti) & J5(v/2).

X Ji(—1)® Jo(=T7i) & S (=T) @ Js(vV2) ® J1(V?2).

O Ji(-1) (=7i) @ Ji(=Ti) ® J5(V2) @ Ja(v/2).

Question 3 (2,5 points). Laquelle des applications suivantes n’est pas une forme linéaire
sur 'espace E donné, c’est-a-dire, un élément de E’?

O F = M,(K) (ou K est un corps) et Tr : £ — K est la trace.

X E=C'R)et L: E—R,f+— f(0)f(1).

1) & Jo

O E:Cl([O,l])ﬂ{f:f(O):O}etI:E—>R,f>—>/O f(x)d?x

zeR

O E:CO(R)ﬂ{f:sup|f(m)| < oo} et M:E'—>]R,fr—>/OO flz)e ™ da.
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Question 4 (2,5 points). Laquelle des applications suivantes n’est pas une forme bili-
néaire sur 'espace F donné?

O E=M,.(R) et B: Ex E—R, (A, B) — Tr(A'B).
X E=R'et B: EXE —R,((z,y,2,t), (@, y, 2, t) = zy +yt’ + 22/ + ty + 1.
O E=C?et B: ExE,((z,w),(Z,w)) —~ 2w + w2

O E=C%0,1)et B: ExE —R,(f,9) r—)/o f(z)g(z)dx.

Question 5 (2,5 points). Soit V; = M;34(C) et Vo = My(C). Alors, la dimension réelle
de V} ®c V3 est égale a

O 22.

0] 44.

L1 96.

X 192.

En effet, V] est de dimension complexe 2 x 3 = 6 et V5 est de dimension complexe
4 x4 = 16, ce qui montre que V; ® V5 est de dimension complexe 6 x 16 = 96, et donc de
dimension réelle 2 x 96 = 192.

Question 6 (2,5 points). Soit Q : R® = R, (x,y, 2) — 2?4+ 2zy + 22 — 4yz + 2z2. Alors,
la signature de () est égale a

P2y + 2 —dyz 2=+ 2u(y+2) 2 —dyz= (vt y+2)? — (y+2) P+ 2 —dyz

=(@+ty+2)? -y —6yz=(z+y+2)*— (y+32)° + 927

ce qui montre que la forme quadratique est de signature (2,1).
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Question 7 (2,5 points). Laquelle des formes bilinéaires sur 1'espace vectoriel réel V
n’est pas un produit scalaire ?

OV =R" (z,y) = kakyk
k=1

OV =RY ((x,y,2,t), (2,9, 2, t)) = 2zx’ +yy + 22+ 2'2 + 222/ +tt.
OV =M,.[R), (4, B) — Tr(A'B).

X V =C"~R* (z,y) =Re (Z :clyz>
i=1

Question 8 (2,5 points). Soit V' un espace vectoriel réel et || - || : V' — R la norme issue
du produit scalaire (-, -). Parmi ces quatre réponses, trouver la formule qui n’est pas
vérifiée pour tout (z,y) € V2 :

1 2 1 2
O {9y = 7 le+yl” = 7 llz —yl”
1 2 1 2 1 2
O == Szl = S gl
(w.9) = 5 llz +ylI” = 5 lell” = 5 lly
Lo 1o 1 2
0 == SyllE = 2 e =yl
(@y) =5 lel” + 5 Iyll” = 5 ll= = yll

1 2 1 o Lo L0
9 (z,y) = 7 o+ yll* + 7 o=l = 5 Nl = 5 Iyl

La quatriéme expression est identiquement nulle.

Question 9 (2,5 points). Soit A € O,(R). Parmi les propriétés suivantes, laquelle n’est
pas vérifice ?

O [|Az|| = ||z|| pour tout z € R™.

[J Les colonnes de A forment une base orthonormée de R™.

[0 Pour tout b € R”, 'application affine R — R", x — Az + b est une isométrie.

X det(A) = 1.

On peut aussi avoir det(A) = —1.

Question 10 (2,5 points). Soit A € M,(R) \ {0} une matrice symétrique (A" = A).
Parmi les propriétés suivantes, laquelle n’est pas vérifiée ?
(] Les valeurs propres de A sont réelles.

[J Les espaces propres de A associés a des valeurs propres distinctes sont deux-a-deux
orthogonaux.

X Les valeurs propres de A sont des nombres algébriques.
(1 11 existe une base orthonormée de R™ formée de vecteurs propres de A.
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Vrai ou Faux?

Question 11 (1 point). Soit A € M,,(C) une matrice symétrique. Alors, A est diagona-
lisable.

L] Vrai.

X Faux.

Le résultat du cours a été démontré pour les matrices symétriques réelles. Si on prend
par exemple la matrice :
2 1
A=~

son polyndme caractéristique vaut (X —1)?, ce qui montre qu’elle serait semblable & I'iden-
tité si elle était diagonalisable. Or, la seule matrice semblable a I'identité est 'identité. La
matrice A n’est donc pas diagonalisable. On peut aussi vérifier que dim(Ker(A —1,) = 1.

Question 12 (1 point). Soit A € O3(R) une matrice orthogonale de déterminant égal a
—1. Alors, —1 est une valeur propre de A.

X Vrai.

0 Faux.

C’est un calcul direct avec la décomposition vue en cours.

Question 13 (1 point). Soit V' un espace vectoriel complexe de dimension finie et f €
Z(V) telle que f™ = Idy (ou m > 2025). Alors, les valeurs propres de f sont des

211
puissances des racines de I'unité ¢, = exp (— :
m

X Vrai.
(] Faux.
Question 14 (1 point). Soit A € M, (C), 1 < k < net (B,C) € Mx(C) x M,,_(C)
B 0
telles que A = (O c
diagonalisables.

X Vrai.
[ Faux.

Question 15 (1 point). Soit K un corps algébriquement clos et A € M, (K). Alors, A
est semblable & une matrice de Jordan.

X Vrai.

U Faux.

). Alors, A est diagonalisable si et seulement si C' et D sont

En effet, le polynome caractéristique est scindé.

4



Alexis Michelat
EPFL - Printemps 2025 Examen blanc
Algebre linéaire avancée 11 Section de Physique 19 avril 2025

Questions ouvertes

Exercice 1 (15 points). Soit {u,} {vn}en s {wn}oeny C RY les suites réelles définies

neN>
par
Upt1 = Up  + 3y,
VYn € N¢ vpp1 =3u, +v, +4w, et (ug, vo, wo) = (1,0,1).
Wn41 = 4Un + wy,
1 30
1. Démontrer que la matrice A= |3 1 4] € M3(R) est diagonalisable.
0 41

2. Diagonaliser la matrice A.

3. Calculer A™ pour tout n € N.

4. En déduire une expression des suites {ty,},cn » {¥n}pen €6 {Wn},cn en fonction de
n.

Démonstration. 1. Le polynéme caractéristique de A est donné par

1-X 3 0
X4 = det 3 1—-X 4
0 4 1-X

=(1-X)P-9(1-X)—-16(1—-X) = (1—-X)((1 - X)*—25)
=—(X-1)(X -6)(X+4).
Le polyndéme caractéristique étant scindé a racines simples, on en déduit que A est dia-
gonalisable.

2. Pour trouver la matrice de passage, on calcule successivement

0 30 4
Ker(A—I3)=Ker [3 0 4] =Vect | 0
040 -3
De méme, on a
-5 3 0 3
Ker(A—6I3) =Ker| 3 —5 4 | =Vect |5
0 4 =5 4
et enfin
5 3 0 3
Ker(A+4I3) =Ker [3 5 4| = Vect | =5
0 4 5 4
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On a donc
10 0
A=P[0 6 0 | P,

00 —4
ou

4 3 3

P=|0 5 =5
-3 4 4

4. 11 faut simplement calculer P~1. Soit avec la méthode du pivot de Gauss ou la
formule des cofacteurs, on trouve

1 8 0 —6
Pt = =513 5 A4
3 =5 4
On a donc
1 0 0 1 8 0 —6
0 6" 0 Pl = =0 2n . gntl 56" ont2. gn
0 0 (_1)n22n (_1)n3 . 22n (_1)n+15 . 22n (_1)n22n+2

1 0 WEREEE: 8 0 —6
Plo 6" 0 Pl=o 0 5 =5 2n . 3ntl 56" 2nt2. 3n
0 0 (=1)"2* -3 4 4 ) \(-1)"3.22n (—1)"tl5. 2% (—1)n2¥nt?

= X
50
32 + N . 3n+2 4 (_1)n9 . 22n 5.0, 3n+1 + (_1)n+115 . 22n —94 + 2n+2 . 3n+1 + (_1)n3 . 22n+2
5.90. 3n+1 + (_1)n+115 . 22n 25 - 6™ + (_1)7125 . 22n 5. 2n+2 .3 (_1)n+15 . 22n+2
—924 + on+2 | gntl 4 (_1)n3 .92n+2 5. 9nt2 3n + (_1)n+15 . 92n+2 18 + on+4 . 3n + (_1)n22n+4

Par conséquent, on obtient
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U, m 1 8+ 9on. 3n+2 + 2n+2 X 3n+1 + (71)719 . 22n + (71)713 . 22n+2
v | = PA"P7 v | = == | 5-27 37l p5.0nH2. 30 4 (_q)nFl15. 920 4 (—q)ntls . 92042
w,, 50 —6 + 2n+2 X 3n+1 + 2n+4 .3 L (_1)713 . 22n+2 4 (_1)n22n+4

! <8+7-2”-3”+1+(1)”3-7-22”)

Wo

=50 5.7-2m.3" 4 (—1)"tl5. 7. 22"
_6_|_7‘2n+2.3n+(_1)n7'22n+2

et on vérifie aisément que cette formule est valable pour n = 0, car

1 84 72" 3 4 (—1)"3. 7. 2% 1 [ 821 +21 1
n n n+1 2n
50 5.7-2"-3" 4+ (=1)"*'5.7.2 =5 35—35 =10
—647- 2230 (<1722 ) —6+ 28 + 28 1
O
Exercice 2 (15 points). Soit
i—1 0 0 —i
t =3 1 —i—4
A= 0 0 -2 o | € My (C).

-1 0 i+2

1. Montrer que le polyndome caractéristique de A est donné par x4 = (X —4)?(X +
2)? € C[X].

Calculer la multiplicité géométrique des valeurs propres de A.

Trouver le polynéme minimal de A.

En déduire la forme de Jordan de A.

Trouver une base de Jordan de A.

O

Démonstration. 1. En développant par rapport a la troisieme ligne, on obtient

i—1-X 0 0 i
i 3_X 1 4
det 0 0 —2-X 0
i | 0 i+2-X
i—1-X 0 i
— (X +2)| 53X —i—4
i 1 it2-X

= (X+)((-1-X)(-3-X)i+2-X)+1—(X+3)+(+4)(i—-1-X))
= (X +2)(-X?*+2( - 1)X*+ (4i + )X +2).
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Comme le polyndéme caractéristique nous est donné, il suffit de vérifier que
—(X =i (X +2) ==X’ +2(i — )X*+ (4i + 1)X +2,
et en effet, on a

(X i) (X+2)=(X"—2X - 1)(X+2) = X*+2(1 —)X* — (1 +4) X — 2.

2.0n a
—1 0 0 —1
Ker (A —ily) = Ker ! _30_ ! _21_ ; _ZO_ 4
—i 1 0 2
Siv=(z,y,z1t)" € Ker(A—ily), on obtient successivement z = 0, x = —it, et
0=—i(—it) +y+2t=y+t,
ce qui donne y = —t. Par conséquent, on obtient

—1
Ker (A —ily) = Vect _0
1

et la multiplicité géométrique de A\; =i est égale a 1. De méme, on a

t+1 0 0 —2
. -1 1 ——4
0 0 O 0
-1 0 ¢+4

Ker(A +21,) = Ker

Siv=(z,y,2t)" € Ker(A+ 21,), en ajoutant la 4¢éme ligne a la 2¢me ligne, on obtient
z2=0,t=(1—14)x, et comme x +y+ 4t = 0, on trouve y = (=5 + 4i)x, et

1
Ker(A + 21,) = Vect _53 S
1—2
et la multiplicité géométrique de la valeur propre Ay = —2 est égale a 1.

3. et 4. Comme les multiplicités géométriques sont égales a 1, la forme de Jordan est
J(A) = Jo(i) @ Jo(—2), ce qui montre que le polynéme minimal est g4 = (X —i)*(X +2)%
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5. Pour trouver une base de Jordan, on calcule

0 — 0 —1
0 5+4 —21—-5 +4
0 0 4i+ 3 0
0 —2—1 1 —i—1

(A—ily)? =

On a donc v = (z,y, 2,t)" € Ker(A—i1)? si et seulement si z = 0 et y+t = 0. On choisit
donc le vecteur

1
us= | | € Ker(4 — L)\ Ker(A —iL)
0
et on définit
1 0 0 —i 1 ~1
w= (A4 2L = | _30_Z —21—2‘ _Zo_4 8 - (Z)
i1 0 2 0 —i

De méme, on a

9% — 1 i 0 —5i42
4i—2 —i—3 —1 —Ti—10

2
(A+2L)" = 0 0 0 0

—4i1+2 +3 1 7410
On a donc v = (x,y, 2,t)" € Ker(A + 21,)? si et seulement si
—iy=(1-2i)x+ (-24+5i)t <=y = 2+ i)z + (=5 — 2i)t.
En ajoutant 2(L1) a (L4), on obtient I’équation

B=dy+2+(14—-3)t=0<= 2= (-3+1i)y+ (—14+ 3i)t
=(=3+4+)2+ i)z + (=3+10)(—5—2i)t + (—14 + i)t
= —(T+ i)z + (3 + 4)t.

On peut donc prendre

1
241
—7—1
0

€ Ker(A +21,)* \ Ker(A +21),

Vo =
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et on trouve

t+1 0 0 —1 1 1+ 1
1 -1 1 —i—4 241 -9 —1
v = (A + 214)1)2 = 0 0 0 0 i = 0 c Ker(A + 214)
—1 1 0 i+4 0 2
Finalement, si
1 1 i+1 1
0 —9—1 249
P=(u w ow)=| o o " ST
—1 0 2 0
on a
110 0
- 1 02 0 O 1
A=PJA)P =P 00 -2 1 P
00 0 =2

10
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Exercice 3 (20 points). Soit K un corps et P = X" +a, ;X" '+ .-+ a; X + ag un
polynéme unitaire de K[X]. Sa matrice compagnon est définie par

0 0 --- 0 —a
1 0 -+ 0 —-a
0O 1 -+ 0 —a
C(P) = ) . )
0 1 0 —Qp—9
0 0 1 —Ap—1
1. Supposons que n < 3. Montrer que xcp) = P sin =2 et xop) = —P pour n = 3,

ou pour tout A € M,,(K), x4 est le polyndéme caractéristique de A.

2. Démontrer que x¢(p) = (—1)"P.

Supposons dans la suite de ’exercice que K = C.

Soit A = {a;;}<; ;<, € Ma(C) et posons pour tout 1 <i <mn:

n
= laigl et Di=Cn{z:|s <ri).
j=1

Pour tout & = (1, ,2,)" € C", soit |l2]|,, = max [z,
<i<n

3. Montrer que pour tout A € o(A), si x € C" est un vecteur propre associé a A, on
a pour tout 1 <7 <n: | x| <z

4. Montrer que

5. Soit P = X"+a, 1 X" ' +---+a;X + ag un polyndme unitaire de C[X]. Montrer
que pour toute racine X de P, on a l'inégalité

I\ < max {|ag|, |a1| + 1, |az| + 1, -+, |an_1| + 1}

6. Cette inégalité est-elle optimale ?

Démonstration. 1. On a trivialement

-X —a
det<1 _al_OX):X(X+a1)+ao=X2+a1X+ao
et en développant par rapport a la derniere ligne, on trouve
—X 0 —Aayg
det | 1 —-X —ay = —(X +a)X? + det (_X —ao)

0 1 —CLQ—X

1 —Qaq

= —<X3 ‘|—CL2X2 + CL1X + CL()).

11
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2. En général, on développe sur la derniere ligne :

X 0 - —ap
1 —X - —a
ey = (DX +ap ) X" P —det | O 1 - —a
O 1 —Qp—2
X 0 - —ag
| X - —a
= ()"X" + a1 X" = (=1)" a2 X" - det | O I - —a
0 - 1 —a,q
- (—1)”()(” + anianfl + a"*QXnil + aanXn72) + (—1)n72an73X"’3
X0 - —aq
X - —a
— det 0 1 — Q9
0 - 1 —ay,

= (—1)" (X" + an 1 X"+ ap o X"+ a X +ap)

par une récurrence immeédiate.
3. On a Ax = Az, ce qui montre que pour tout ¢ =1,---,n, on a

n

)\J]Z‘ = (AJZ)Z = Z Qi 5.

J=1

L’inégalité triangulaire montre donc que
n n
Aol <Y laigllzs) <D laigl 2l = 72l -
7=1 Jj=1
4. On obtient par conséquent

el = e el < (oo o) Bl

et comme ||z||_, > 0 (on a z ¢ 0 car = est un vecteur propre, et || - || est une norme), on
peut diviser par ||z|_, ce qui donne

|A| < max 7y,
1<i<n

12
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et comme

UD" =D (0, max ri) )
= 1<i<n

la valeur propre A € o(A) étant arbitraire, on en déduit que o(A) C UE(O, Ti).
i=1

5. En utilisant la matrice compagnon C'(P), on voir que 1 = |ag| et que r; = |a;| + 1
pour tout 2 < ¢ < n. Comme x¢(py = (—1)"P, on en déduit que les valeurs propres de
C(P) sont exactement données par les racines de P (avec multiplicité), ce qui montre par
I'inégalité précédente que pour toute racine A de P, on a

|)\| S maX{|aO|7 |(11| + 17 |CL2| + 17 e 7|an—1| + 1}

6. L’inégalité est optimale. Soit a; > 0, a9 = —(14+a;) et P=X?>—a; X — (1 + a1).
OnaA=a?+4(1+a;) = (a1 +2)?, ce qui montre que les racines sont égales a

— 2 2
W ol e PR VR e L e ) I
2 2
ce qui montre que Ay = a; + 1 = |a;| + 1 et I'inégalité est donc optimale. O

Exercice 4 (20 points). Supposons qu'il existe deux matrices A, B € M, (R) telles que
A*=-1,, B*=-1,, AB+BA=0,, (1)

ou 0, € M, (R) est la matrice nulle.

1. Démontrer que n ne peut étre impair.

2. Démontrer que le sous-espace vectoriel H engendré par les matrices I,,, A, B et
AB est une sous-algebre de M,,(R), ¢’est-a-dire, qu’il est stable par multiplication
matricielle.

3. Soit C' = AB. Pour tout z,y, z,t € R, calculer le produit
(tl,+zA+yB+:20)(tl,—xA—yB—-=2C).

4. En déduire :
(i) Que les quatre matrices I,,, A, B et C sont indépendantes et forment une base
de H.
(ii) Que H est un corps.

5. On suppose dans la suite du probleme que n = 4. Soit J = (O _01> et

1
i J 02 . 02 _12
o) )
On définit également C' = AB.

13
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(i) Montrer que les matrices A et B satisfont aux conditions de I’équation (1). On
appellera donc H le sous-espace vectoriel de My(R) engendré par 1, A, B et
C'. Ses éléments sont appelés des quaternions.

(ii) Soit M € H\ {0}. Vérifier que M" € H. Quel lien y a-t-il entre M" et I'inverse
M~t?

Démonstration. 1. En utilisant la propriété d’homomorphisme multiplicatif du détermi-
nant, on a det(A?) = det(A)? > 0, or det(—1I,) = (—1)", ce qui montre que (—1)" =
det(A)? > 0. Par conséquent, n doit étre pair.

2. Soit C = AB. Comme AB = —BA, on calcule AC = A?2B = —B, CA = ABA =
—BA? = B, BC = BAB = —AB? = A et enfin CB = AB?> = —A. Enfin, on a
C? = (AB)(AB) = —(BA)(AB) = —B(A*)B = B? = —1,, en vertu de l'associativité du
produit matriciel. En d’autres termes, on a les relations suivantes

A*=pB?*=C%*= -1,

AB=—-BA=C @)
BC=-CB=A
CA=-AC=8B

Si on note A; = A, Ay = B et A3 = C, on en déduit en utilisant des indices sur

Zs = Z)3Z que A;A;1 = —Ai 1A = Ajyo pour tout @ € Zz. On voit donc que H est
stable par multiplication matricielle.

3. On calcule donc en utilisant la table (2) précédente

(tla+2A+yB+2C)(tl,—2A—yB—20) =11, —atA — ytB — 2tC
+atA —2? A — 2y AB — 12 AC + yt-B — vy BA — y*B* — yz BC

+2tC —22CA —yzCOB — 2*C*?

= (22 4+ y* + 22 + 1), — 2y (AB + BA) — 22(AC + CA) — yz(BC + CB)
= (2 + 2+ 2+ 1),

car A;Ajy1 = —Ai1A; et A? = —1,, avec les notations précédentes.
4. (i) En effet, sil existe (z,y, z,t) € R* tels que t I, +x A+y B+ 2z C = 0, on obtient
également
0=(tl,+2A+yB+z2C)(tl,—2A—yB—=zC)
= (2* +y? + 22 + D],

Par conséquent, on en déduit que 2% +y*+22+t> = 0, ce qui montreque x =y = 2 =t = 0
(une somme de carrés de nombres réels est nulle si et seulement si chaque nombre est
nul).
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(i) Pour tout v € H, il existe (x,y,2,t) € R* tels que v = t1, + x A+y B+ 2C. Si
v # 0, on obtient donc x? + 4% + 22 + 2 > 0, et si
1

w:x2+y2+22+t2 (tl,—zA—yB—z20),

le calcul précédent montre que vw = I,,. De plus, en appliquant le calcul précédent a
w, on trouve

1

T 21 W+ 22 + 12 (=22 + (=y)* + (=2)* + *) I, = 1.

wv

La multiplication matricielle étant associative, et comme tout élément non nul de H
admet un unique inverse, on en déduit que H est un corps. On notera cependant que H
est un corps non-commutatif : en général, 'identité xy = yx n’est pas vérifiée.

5. (i) On calcule aisément

0 -1 0 O 00 -1 O 0 0 0 1
1 0 0 0 00 0 -1 0 0 -1 0
C=AB= 0 0 0 1 10 0 O |0 1 0 O
0O 0 -1 0 01 0 O -1 0 0 O
et
00 -1 0 0 -1 0 0 0 0 0 -1
00 0 -1 1 0 0 0 0 0 1 0
BA=110 0 oflo o o 1|7 |o-10 0o|=7%
01 0 O 0 0 -1 0 1 0 0 0
Comme J? = —I,, on peut calculer par blocs

A% = (g —OJ> <g —OJ) - ({)2 (—(37>2) - <_012 —012) T

et de méme, on a
—Iy-1 0 - 0
2 2 1o _ 2 o
b ‘( 0 12-(—12>> B ( 0 —IQ) -

(i) Comme A" = —A, B' = —B et C* = —C, pour tout M € H \ {0} il existe
(z,y,2,t) € R*\ {0} tels que M =t1,, + x A+ y B+ 2 C, et on obtient donc

M =(tl,+2A+yB+2C)=tl,+xA'+yB' +:2C"=tl,—2A—-yB—z2C,
ce qui montre que

M'=@*+y*+ 22+ )M
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