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Ici comme dans l’examen final, les QCM représentent entre 30 et 35% de la note finale.
Les réponses correctes comptent pour 2, 5 points s’il y a quatre réponses possibles, 1 point
pour les questions de type « vrai-faux », et dans les deux cas, les réponses incorrectes ou
absentes pour 0 point. Il n’y a donc pas de points négatifs dans l’examen, le but
étant de tester vos connaissances, et non ce que vous ne savez pas. Il y a dix
questions pour lesquelles on donne quatre réponses possibles, cinq questions vrai-faux
(qui représentent donc 2, 5 × 10 + 5 × 1 = 30 points) ainsi que cinq exercices à rédaction
détaillée représentant 70 points. Le total des points est donc égal à 100.

Questionnaire à choix multiples

Question 1 (2,5 points). Soit A ∈ M8(C) telle que J(A) = J4(4i) ⊕ J1(4i) ⊕ J2(
√

5) ⊕
J1(

√
5). Alors, le rapport κA = χA

µA

entre le polynôme caractéristique et le polynôme
minimal est égal à

□ (X − 4i)4(X −
√

5)2.
□ (X − 4i)2(X −

√
5)2.

□ 1.
⊠ (X − 4i)(X −

√
5).

En effet, la forme de Jordan montre que le polynôme caractéristique est égal à (X −
4i)5(X −

√
5)3 et que le polynôme minimal est égal à (X − 4i)4(X −

√
5)2.

Question 2 (2,5 points). Soit A ∈ M9(C) dont le polynôme caractéristique et le polynôme
minimal sont donnés respectivement par χA(X) = (−X − 1)(X + 7i)3(X −

√
2)5 et

µA = (X + 1)(X + 7i)2(X −
√

2)4. Alors, la matrice de Jordan J(A) de A est donnée par
□ J1(−1) ⊕ J3(−7i) ⊕ J5(

√
2).

□ J1(−1) ⊕ J2(−7i) ⊕ J1(−7i) ⊕ J5(
√

2).
⊠ J1(−1) ⊕ J2(−7i) ⊕ J1(−7i) ⊕ J4(

√
2) ⊕ J1(

√
2).

□ J1(−1) ⊕ J2(−7i) ⊕ J1(−7i) ⊕ J3(
√

2) ⊕ J2(
√

2).

Question 3 (2,5 points). Laquelle des applications suivantes n’est pas une forme linéaire
sur l’espace E donné, c’est-à-dire, un élément de E ′ ?

□ E = Mn(K) (où K est un corps) et Tr : E → K est la trace.
⊠ E = C0(R) et L : E → R, f 7→ f(0)f(1).

□ E = C1([0, 1]) ∩ {f : f(0) = 0} et I : E → R, f 7→
∫ 1

0
f(x)dx

x
.

□ E = C0(R) ∩
{

f : sup
x∈R

|f(x)| < ∞
}

et M : E → R, f 7→
∫ ∞

−∞
f(x)e−x2

dx.
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Question 4 (2,5 points). Laquelle des applications suivantes n’est pas une forme bili-
néaire sur l’espace E donné ?

□ E = Mm,n(R) et B : E × E → R, (A, B) 7→ Tr(AtB).
⊠ E = R4 et B : E × E → R, ((x, y, z, t), (x′, y′, z′, t′)) 7→ xy′ + yt′ + zx′ + ty′ + 1.
□ E = C2 et B : E × E, ((z, w), (z′, w′)) 7→ zw′ + wz′.

□ E = C0([0, 1]) et B : E × E → R, (f, g) 7→
∫ 1

0
f(x)g(x)dx.

Question 5 (2,5 points). Soit V1 = M3,2(C) et V2 = M4(C). Alors, la dimension réelle
de V1 ⊗C V2 est égale à

□ 22.
□ 44.
□ 96.
⊠ 192.

En effet, V1 est de dimension complexe 2 × 3 = 6 et V2 est de dimension complexe
4 × 4 = 16, ce qui montre que V1 ⊗ V2 est de dimension complexe 6 × 16 = 96, et donc de
dimension réelle 2 × 96 = 192.

Question 6 (2,5 points). Soit Q : R3 → R, (x, y, z) 7→ x2 + 2xy + z2 − 4yz + 2xz. Alors,
la signature de Q est égale à

□ (3, 0).
□ (0, 3).
⊠ (2, 1).
□ (1, 2).

On a

x2 + 2xy + z2 − 4yz + 2xz = x2 + 2x(y + z) + z2 − 4yz = (x + y + z)2 − (y + z)2 + z2 − 4yz

= (x + y + z)2 − y2 − 6yz = (x + y + z)2 − (y + 3z)2 + 9z2,

ce qui montre que la forme quadratique est de signature (2, 1).
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Question 7 (2,5 points). Laquelle des formes bilinéaires sur l’espace vectoriel réel V
n’est pas un produit scalaire ?

□ V = Rn, ⟨x, y⟩ =
n∑

k=1

k xk yk.

□ V = R4, ⟨(x, y, z, t), (x′, y′, z′, t′)⟩ = 2xx′ + yy′ + xz + x′z′ + 2zz′ + tt′.
□ V = Mm,n(R), (A, B) 7→ Tr(AtB).

⊠ V = Cn ≃ R2n, ⟨x, y⟩ = Re
(

n∑
i=1

xiyi

)
.

Question 8 (2,5 points). Soit V un espace vectoriel réel et ∥ · ∥ : V → R la norme issue
du produit scalaire ⟨ · , · ⟩. Parmi ces quatre réponses, trouver la formule qui n’est pas
vérifiée pour tout (x, y) ∈ V 2 :

□ ⟨x, y⟩ = 1
4 ∥x + y∥2 − 1

4 ∥x − y∥2.

□ ⟨x, y⟩ = 1
2 ∥x + y∥2 − 1

2 ∥x∥2 − 1
2 ∥y∥2.

□ ⟨x, y⟩ = 1
2 ∥x∥2 + 1

2 ∥y∥2 − 1
2 ∥x − y∥2.

⊠ ⟨x, y⟩ = 1
4 ∥x + y∥2 + 1

4 ∥x − y∥2 − 1
2 ∥x∥2 − 1

2 ∥y∥2.

La quatrième expression est identiquement nulle.

Question 9 (2,5 points). Soit A ∈ On(R). Parmi les propriétés suivantes, laquelle n’est
pas vérifiée ?

□ ∥Ax∥ = ∥x∥ pour tout x ∈ Rn.
□ Les colonnes de A forment une base orthonormée de Rn.
□ Pour tout b ∈ Rn, l’application affine Rn → Rn, x 7→ Ax + b est une isométrie.
⊠ det(A) = 1.

On peut aussi avoir det(A) = −1.

Question 10 (2,5 points). Soit A ∈ Mn(R) \ {0} une matrice symétrique (At = A).
Parmi les propriétés suivantes, laquelle n’est pas vérifiée ?

□ Les valeurs propres de A sont réelles.
□ Les espaces propres de A associés à des valeurs propres distinctes sont deux-à-deux

orthogonaux.
⊠ Les valeurs propres de A sont des nombres algébriques.
□ Il existe une base orthonormée de Rn formée de vecteurs propres de A.
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Vrai ou Faux ?

Question 11 (1 point). Soit A ∈ Mn(C) une matrice symétrique. Alors, A est diagona-
lisable.

□ Vrai.
⊠ Faux.

Le résultat du cours a été démontré pour les matrices symétriques réelles. Si on prend
par exemple la matrice :

A =
(

2 i
i 0

)
,

son polynôme caractéristique vaut (X−1)2, ce qui montre qu’elle serait semblable à l’iden-
tité si elle était diagonalisable. Or, la seule matrice semblable à l’identité est l’identité. La
matrice A n’est donc pas diagonalisable. On peut aussi vérifier que dim(Ker(A − I2) = 1.
Question 12 (1 point). Soit A ∈ O3(R) une matrice orthogonale de déterminant égal à
−1. Alors, −1 est une valeur propre de A.

⊠ Vrai.
□ Faux.

C’est un calcul direct avec la décomposition vue en cours.
Question 13 (1 point). Soit V un espace vectoriel complexe de dimension finie et f ∈
L (V ) telle que fm = IdV (où m ≥ 2025). Alors, les valeurs propres de f sont des

puissances des racines de l’unité ζm = exp
(

2πi

m

)
.

⊠ Vrai.
□ Faux.

Question 14 (1 point). Soit A ∈ Mn(C), 1 ≤ k ≤ n et (B, C) ∈ Mk(C) × Mn−k(C)

telles que A =
(

B 0
0 C

)
. Alors, A est diagonalisable si et seulement si C et D sont

diagonalisables.
⊠ Vrai.
□ Faux.

Question 15 (1 point). Soit K un corps algébriquement clos et A ∈ Mn(K). Alors, A
est semblable à une matrice de Jordan.

⊠ Vrai.
□ Faux.

En effet, le polynôme caractéristique est scindé.
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Questions ouvertes

Exercice 1 (15 points). Soit {un}n∈N , {vn}n∈N , {wn}n∈N ⊂ RN les suites réelles définies
par

∀n ∈ N


un+1 = un + 3 vn

vn+1 = 3 un + vn + 4 wn

wn+1 = 4 vn + wn

et (u0, v0, w0) = (1, 0, 1).

1. Démontrer que la matrice A =

1 3 0
3 1 4
0 4 1

 ∈ M3(R) est diagonalisable.

2. Diagonaliser la matrice A.
3. Calculer An pour tout n ∈ N.
4. En déduire une expression des suites {un}n∈N , {vn}n∈N et {wn}n∈N en fonction de

n.

Démonstration. 1. Le polynôme caractéristique de A est donné par

χA = det

1 − X 3 0
3 1 − X 4
0 4 1 − X


= (1 − X)3 − 9(1 − X) − 16(1 − X) = (1 − X)((1 − X)2 − 25)
= −(X − 1)(X − 6)(X + 4).

Le polynôme caractéristique étant scindé à racines simples, on en déduit que A est dia-
gonalisable.

2. Pour trouver la matrice de passage, on calcule successivement

Ker(A − I3) = Ker

0 3 0
3 0 4
0 4 0

 = Vect

 4
0

−3

 .

De même, on a

Ker(A − 6 I3) = Ker

−5 3 0
3 −5 4
0 4 −5

 = Vect

3
5
4


et enfin

Ker(A + 4 I3) = Ker

5 3 0
3 5 4
0 4 5

 = Vect

 3
−5
4


5
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On a donc

A = P

1 0 0
0 6 0
0 0 −4

P −1,

où

P =

 4 3 3
0 5 −5

−3 4 4

 .

3. Par conséquent, on a pour tout n ∈ N

An = P

1 0 0
0 6n 0
0 0 (−1)n22n

P −1.

4. Il faut simplement calculer P −1. Soit avec la méthode du pivot de Gauss ou la
formule des cofacteurs, on trouve

P −1 = 1
50

8 0 −6
3 5 4
3 −5 4


On a donc1 0 0

0 6n 0
0 0 (−1)n22n

P −1 = 1
50

 8 0 −6
2n · 3n+1 5 · 6n 2n+2 · 3n

(−1)n3 · 22n (−1)n+15 · 22n (−1)n22n+2


et finalement

P

1 0 0
0 6n 0
0 0 (−1)n22n

P −1 = 1
50

 4 3 3
0 5 −5

−3 4 4

 8 0 −6
2n · 3n+1 5 · 6n 2n+2 · 3n

(−1)n3 · 22n (−1)n+15 · 22n (−1)n22n+2


= 1

50× 32 + 2n · 3n+2 + (−1)n9 · 22n 5 · 2n · 3n+1 + (−1)n+115 · 22n −24 + 2n+2 · 3n+1 + (−1)n3 · 22n+2

5 · 2n · 3n+1 + (−1)n+115 · 22n 25 · 6n + (−1)n25 · 22n 5 · 2n+2 · 3n + (−1)n+15 · 22n+2

−24 + 2n+2 · 3n+1 + (−1)n3 · 22n+2 5 · 2n+2 · 3n + (−1)n+15 · 22n+2 18 + 2n+4 · 3n + (−1)n22n+4

 .

Par conséquent, on obtient
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un

vn

wn

 = PAnP −1

u0
v0
w0

 = 1
50

 8 + 2n · 3n+2 + 2n+2 · 3n+1 + (−1)n9 · 22n + (−1)n3 · 22n+2

5 · 2n · 3n+1 + 5 · 2n+2 · 3n + (−1)n+115 · 22n + (−1)n+15 · 22n+2

−6 + 2n+2 · 3n+1 + 2n+4 · 3n + (−1)n3 · 22n+2 + (−1)n22n+4


= 1

50

 8 + 7 · 2n · 3n+1 + (−1)n3 · 7 · 22n

5 · 7 · 2n · 3n + (−1)n+15 · 7 · 22n

−6 + 7 · 2n+2 · 3n + (−1)n7 · 22n+2


et on vérifie aisément que cette formule est valable pour n = 0, car

1
50

 8 + 7 · 2n · 3n+1 + (−1)n3 · 7 · 22n

5 · 7 · 2n · 3n + (−1)n+15 · 7 · 22n

−6 + 7 · 2n+2 · 3n + (−1)n7 · 22n+2


|n=0

= 1
50

 8 + 21 + 21
35 − 35

−6 + 28 + 28

 =

1
0
1

 .

Exercice 2 (15 points). Soit

A =


i − 1 0 0 −i

i −3 1 −i − 4
0 0 −2 0

−i 1 0 i + 2

 ∈ M4(C).

1. Montrer que le polynôme caractéristique de A est donné par χA = (X − i)2(X +
2)2 ∈ C[X].

2. Calculer la multiplicité géométrique des valeurs propres de A.
3. Trouver le polynôme minimal de A.
4. En déduire la forme de Jordan de A.
5. Trouver une base de Jordan de A.

Démonstration. 1. En développant par rapport à la troisième ligne, on obtient

det


i − 1 − X 0 0 −i

i −3 − X 1 −i − 4
0 0 −2 − X 0

−i 1 0 i + 2 − X


= −(X + 2)

∣∣∣∣∣∣
i − 1 − X 0 −i

i −3 − X −i − 4
−i 1 i + 2 − X

∣∣∣∣∣∣
= −(X + 2) ((i − 1 − X)(−3 − X)(i + 2 − X) + 1 − (X + 3) + (i + 4)(i − 1 − X))
= −(X + 2)(−X3 + 2(i − 1)X2 + (4i + 1)X + 2).
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Comme le polynôme caractéristique nous est donné, il suffit de vérifier que

−(X − i)2(X + 2) = −X3 + 2(i − 1)X2 + (4i + 1)X + 2,

et en effet, on a

(X − i)2(X + 2) = (X2 − 2iX − 1)(X + 2) = X3 + 2(1 − i)X2 − (1 + 4i)X − 2.

2. On a

Ker (A − i I4) = Ker


−1 0 0 −i
i −3 − i 1 −i − 4
0 0 −2 − i 0

−i 1 0 2

 .

Si v = (x, y, z, t)t ∈ Ker(A − i I4), on obtient successivement z = 0, x = −i t, et

0 = −i(−i t) + y + 2t = y + t,

ce qui donne y = −t. Par conséquent, on obtient

Ker (A − i I4) = Vect


−i
−1
0
1


et la multiplicité géométrique de λ1 = i est égale à 1. De même, on a

Ker(A + 2 I4) = Ker


i + 1 0 0 −i

i −1 1 −i − 4
0 0 0 0

−i 1 0 i + 4

 .

Si v = (x, y, z, t)t ∈ Ker(A + 2 I4), en ajoutant la 4ème ligne à la 2ème ligne, on obtient
z = 0, t = (1 − i)x, et comme x + y + 4t = 0, on trouve y = (−5 + 4i)x, et

Ker(A + 2 I4) = Vect


1

−5 + 4i
0

1 − i

 ,

et la multiplicité géométrique de la valeur propre λ2 = −2 est égale à 1.
3. et 4. Comme les multiplicités géométriques sont égales à 1, la forme de Jordan est

J(A) = J2(i)⊕J2(−2), ce qui montre que le polynôme minimal est µA = (X −i)2(X +2)2.
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5. Pour trouver une base de Jordan, on calcule

(A − i I4)2 =


0 −i 0 −i
0 5i + 4 −2i − 5 5i + 4
0 0 4i + 3 0
0 −i − 1 1 −i − 1

 .

On a donc v = (x, y, z, t)t ∈ Ker(A− i I4)2 si et seulement si z = 0 et y + t = 0. On choisit
donc le vecteur

u2 =


1
0
0
0

 ∈ Ker(A − i I4)2 \ Ker(A − i I4)

et on définit

u1 = (A + 2 I4)u2 =


−1 0 0 −i
i −3 − i 1 −i − 4
0 0 −2 − i 0

−i 1 0 2




1
0
0
0

 =


−1
i
0

−i

 .

De même, on a

(A + 2 I4)2 =


2i − 1 −i 0 −5i + 2
4i − 2 −i − 3 −1 −7i − 10

0 0 0 0
−4i + 2 i + 3 1 7i + 10


On a donc v = (x, y, z, t)t ∈ Ker(A + 2 I4)2 si et seulement si

−i y = (1 − 2i)x + (−2 + 5i)t ⇐⇒ y = (2 + i)x + (−5 − 2i)t.

En ajoutant 2(L1) à (L4), on obtient l’équation

(3 − i)y + z + (14 − 3i)t = 0 ⇐⇒ z = (−3 + i)y + (−14 + 3i)t
= (−3 + i)(2 + i)x + (−3 + i)(−5 − 2i)t + (−14 + 3i)t
= −(7 + i)x + (3 + 4i)t.

On peut donc prendre

v2 =


1

2 + i
−7 − i

0

 ∈ Ker(A + 2 I4)2 \ Ker(A + 2 I4),
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et on trouve

v1 = (A + 2 I4)v2 =


i + 1 0 0 −i

i −1 1 −i − 4
0 0 0 0

−i 1 0 i + 4




1
2 + i

−7 − i
0

 =


i + 1

−9 − i
0
2

 ∈ Ker(A + 2 I4).

Finalement, si

P =
(
u1 u2 v1 v2

)
=


1 1 i + 1 1
i 0 −9 − i 2 + i
0 0 0 −7 − i

−i 0 2 0

 ,

on a

A = PJ(A)P −1 = P


i 1 0 0
0 i 0 0
0 0 −2 1
0 0 0 −2

P −1.
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Exercice 3 (20 points). Soit K un corps et P = Xn + an−1X
n−1 + · · · + a1X + a0 un

polynôme unitaire de K[X]. Sa matrice compagnon est définie par

C(P ) =



0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
... ... ... ... ...
0 · · · 1 0 −an−2
0 · · · 0 1 −an−1


1. Supposons que n ≤ 3. Montrer que χC(P ) = P si n = 2 et χC(P ) = −P pour n = 3,

où pour tout A ∈ Mn(K), χA est le polynôme caractéristique de A.
2. Démontrer que χC(P ) = (−1)nP .

Supposons dans la suite de l’exercice que K = C.
Soit A = {ai,j}1≤i,j≤n ∈ Mn(C) et posons pour tout 1 ≤ i ≤ n :

ri =
n∑

j=1

|ai,j| et Di = C ∩ {z : |z| ≤ ri} .

Pour tout x = (x1, · · · , xn)t ∈ Cn, soit ∥x∥∞ = max
1≤i≤n

|xi|.

3. Montrer que pour tout λ ∈ σ(A), si x ∈ Cn est un vecteur propre associé à λ, on
a pour tout 1 ≤ i ≤ n : |λxi| ≤ ri ∥x∥∞.

4. Montrer que

σ(A) ⊂
n⋃

i=1

Di.

5. Soit P = Xn + an−1X
n−1 + · · · + a1X + a0 un polynôme unitaire de C[X]. Montrer

que pour toute racine λ de P , on a l’inégalité
|λ| ≤ max {|a0|, |a1| + 1, |a2| + 1, · · · , |an−1| + 1} .

6. Cette inégalité est-elle optimale ?

Démonstration. 1. On a trivialement

det
(

−X −a0
1 −a1 − X

)
= X(X + a1) + a0 = X2 + a1X + a0

et en développant par rapport à la dernière ligne, on trouve

det

−X 0 −a0
1 −X −a1
0 1 −a2 − X

 = −(X + a2)X2 + det
(

−X −a0
1 −a1

)
= −(X3 + a2X

2 + a1X + a0).
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2. En général, on développe sur la dernière ligne :

χC(P ) = (−1)n(X + an−1)Xn−1 − det


−X 0 · · · −a0

1 −X · · · −a1
0 1 · · · −a2
... ... ... ...
0 · · · 1 −an−2



= (−1)n(Xn + an−1X
n−1) − (−1)n−1an−2X

n−2 + det


−X 0 · · · −a0

1 −X · · · −a1
0 1 · · · −a2
... ... ... ...
0 · · · 1 −an−3


= (−1)n(Xn + an−1X

n−1 + an−2X
n−1 + an−2X

n−2) + (−1)n−2an−3X
n−3

− det


−X 0 · · · −a0

1 −X · · · −a1
0 1 · · · −a2
... ... ... ...
0 · · · 1 −an−4


= (−1)n

(
Xn + an−1X

n−1 + an−2X
n−2 + · · · + a1X + a0

)
par une récurrence immédiate.

3. On a Ax = λx, ce qui montre que pour tout i = 1, · · · , n, on a

λ xi = (Ax)i =
n∑

j=1

ai,jxj.

L’inégalité triangulaire montre donc que

|λ xi| ≤
n∑

j=1

|ai,j||xj| ≤
n∑

j=1

|ai,j| ∥x∥∞ = ri ∥x∥∞ .

4. On obtient par conséquent

|λ| ∥x∥∞ = max
1≤i≤n

|λxi| ≤
(

max
1≤i≤n

ri

)
∥x∥∞ ,

et comme ∥x∥∞ > 0 (on a x /∈ 0 car x est un vecteur propre, et ∥ · ∥∞ est une norme), on
peut diviser par ∥x∥∞, ce qui donne

|λ| ≤ max
1≤i≤n

ri,
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et comme
n⋃

i=1

Di = D

(
0, max

1≤i≤n
ri

)
,

la valeur propre λ ∈ σ(A) étant arbitraire, on en déduit que σ(A) ⊂
n⋃

i=1

D(0, ri).

5. En utilisant la matrice compagnon C(P ), on voir que r1 = |a0| et que ri = |ai| + 1
pour tout 2 ≤ i ≤ n. Comme χC(P ) = (−1)nP , on en déduit que les valeurs propres de
C(P ) sont exactement données par les racines de P (avec multiplicité), ce qui montre par
l’inégalité précédente que pour toute racine λ de P , on a

|λ| ≤ max {|a0|, |a1| + 1, |a2| + 1, · · · , |an−1| + 1}

6. L’inégalité est optimale. Soit a1 > 0, a0 = −(1 + a1) et P = X2 − a1 X − (1 + a1).
On a ∆ = a2

1 + 4(1 + a1) = (a1 + 2)2, ce qui montre que les racines sont égales à

λ1 = a1 − (a1 + 2)
2 = −1 et λ2 = a1 + (a1 + 2)

2 = a1 + 1,

ce qui montre que λ2 = a1 + 1 = |a1| + 1 et l’inégalité est donc optimale.

Exercice 4 (20 points). Supposons qu’il existe deux matrices A, B ∈ Mn(R) telles que

A2 = −In, B2 = −In, AB + BA = 0n, (1)

où 0n ∈ Mn(R) est la matrice nulle.
1. Démontrer que n ne peut être impair.
2. Démontrer que le sous-espace vectoriel H engendré par les matrices In, A, B et

AB est une sous-algèbre de Mn(R), c’est-à-dire, qu’il est stable par multiplication
matricielle.

3. Soit C = AB. Pour tout x, y, z, t ∈ R, calculer le produit

(t In + x A + y B + z C) (t In − x A − y B − z C) .

4. En déduire :
(i) Que les quatre matrices In, A, B et C sont indépendantes et forment une base

de H.
(ii) Que H est un corps.

5. On suppose dans la suite du problème que n = 4. Soit J =
(

0 −1
1 0

)
et

A =
(

J 02
02 −J

)
B =

(
02 −I2
I2 02

)
.

On définit également C = AB.
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(i) Montrer que les matrices A et B satisfont aux conditions de l’équation (1). On
appellera donc H le sous-espace vectoriel de M4(R) engendré par I4, A, B et
C. Ses éléments sont appelés des quaternions.

(ii) Soit M ∈ H \ {0}. Vérifier que M t ∈ H. Quel lien y a-t-il entre M t et l’inverse
M−1 ?

Démonstration. 1. En utilisant la propriété d’homomorphisme multiplicatif du détermi-
nant, on a det(A2) = det(A)2 ≥ 0, or det(−In) = (−1)n, ce qui montre que (−1)n =
det(A)2 ≥ 0. Par conséquent, n doit être pair.

2. Soit C = AB. Comme AB = −BA, on calcule AC = A2B = −B, CA = ABA =
−BA2 = B, BC = BAB = −AB2 = A et enfin CB = AB2 = −A. Enfin, on a
C2 = (AB)(AB) = −(BA)(AB) = −B(A2)B = B2 = −In en vertu de l’associativité du
produit matriciel. En d’autres termes, on a les relations suivantes

A2 = B2 = C2 = −In

AB = −BA = C

BC = −CB = A

CA = −AC = B

(2)

Si on note A1 = A, A2 = B et A3 = C, on en déduit en utilisant des indices sur
Z3 = Z/3Z que AiAi+1 = −Ai+1Ai = Ai+2 pour tout i ∈ Z3. On voit donc que H est
stable par multiplication matricielle.

3. On calcule donc en utilisant la table (2) précédente

(t In + x A + y B + z C) (t In − x A − y B − z C) = t2 In −���xt A −�
��yt B −���zt C

+���xt A − x2 A2 − xy AB − xz AC +���yt B − xy BA − y2B2 − yz BC

+���zt C − xz CA − yz CB − z2C2

= (x2 + y2 + z2 + t2)In − xy (AB + BA) − xz(AC + CA) − yz(BC + CB)
= (x2 + y2 + z2 + t2)In

car AiAi+1 = −Ai+1Ai et A2
i = −In avec les notations précédentes.

4. (i) En effet, s’il existe (x, y, z, t) ∈ R4 tels que t In + x A + y B + z C = 0, on obtient
également

0 = (t In + x A + y B + z C) (t In − x A − y B − z C)
= (x2 + y2 + z2 + t2)In.

Par conséquent, on en déduit que x2+y2+z2+t2 = 0, ce qui montre que x = y = z = t = 0
(une somme de carrés de nombres réels est nulle si et seulement si chaque nombre est
nul).
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(ii) Pour tout v ∈ H, il existe (x, y, z, t) ∈ R4 tels que v = t In + x A + y B + z C. Si
v ̸= 0, on obtient donc x2 + y2 + z2 + t2 > 0, et si

w = 1
x2 + y2 + z2 + t2 (t In − x A − y B − z C) ,

le calcul précédent montre que vw = In. De plus, en appliquant le calcul précédent à
w, on trouve

wv = 1
x2 + y2 + z2 + t2

(
(−x)2 + (−y)2 + (−z)2 + t2) In = In.

La multiplication matricielle étant associative, et comme tout élément non nul de H
admet un unique inverse, on en déduit que H est un corps. On notera cependant que H
est un corps non-commutatif : en général, l’identité xy = yx n’est pas vérifiée.

5. (i) On calcule aisément

C = AB =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 =


0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0


et

BA =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 = −C.

Comme J2 = −I2, on peut calculer par blocs

A2 =
(

J 0
0 −J

)(
J 0
0 −J

)
=
(

J2 0
0 (−J)2

)
=
(

−I2 0
0 −I2

)
= −I4,

et de même, on a

B2 =
(

−I2 · I2 0
0 I2 · (−I2)

)
=
(

−I2 0
0 −I2

)
= −I4.

(ii) Comme At = −A, Bt = −B et Ct = −C, pour tout M ∈ H \ {0} il existe
(x, y, z, t) ∈ R4 \ {0} tels que M = t In + x A + y B + z C, et on obtient donc

M t = (t In + x A + y B + z C) = t In + x At + y Bt + z Ct = t In − x A − y B − z C,

ce qui montre que

M t = (x2 + y2 + z2 + t2)M−1.
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